Product Quality Prediction for Wire Electrical Discharge Machining with Markov Transition Fields and Convolutional Long Short-Term Memory Neural Networks

نویسندگان

چکیده

This paper proposes a wire electrical discharge machining (WEDM) product quality prediction method, called MTF-CLSTM, to integrate the Markov transition field (MTF) and convolutional long short-term memory (CLSTM) neural network. The proposed MTF-CLSTM method can accurately predict WEDM workpiece surface roughness right after manufacturing by collecting analyzing static parameters dynamic conditions. highly accurate is due following two reasons. First, MTF transform data into images extract temporal information state probability information. Second, CLSTM network image spacial features relationship of that are separated far apart. In short, predicts with model using compared 10 related research studies in many aspects. There only one existing like Experiments conducted evaluate performance show significantly outperforms terms mean absolute percentage error.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stacked Long Short-term Memory Neural Networks

In this paper, we describe a novel approach to generate conference call-for-papers using Natural Language Processing and Long Short-Term Memory network. The approach has been successfully evaluated on a publicly available dataset.

متن کامل

Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding

Motivation Experimental techniques for measuring chromatin accessibility are expensive and time consuming, appealing for the development of computational approaches to predict open chromatin regions from DNA sequences. Along this direction, existing methods fall into two classes: one based on handcrafted k -mer features and the other based on convolutional neural networks. Although both categor...

متن کامل

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

An analysis of Convolutional Long Short-Term Memory Recurrent Neural Networks for gesture recognition

In this research, we analyze a Convolutional Long Short-Term Memory Recurrent Neural Network (CNNLSTM) in the context of gesture recognition. CNNLSTMs are able to successfully learn gestures of varying duration and complexity. For this reason, we analyze the architecture by presenting a qualitative evaluation of the model, based on the visualization of the internal representations of the convol...

متن کامل

Long short-term memory based convolutional recurrent neural networks for large vocabulary speech recognition

Long short-term memory (LSTM) recurrent neural networks (RNNs) have been shown to give state-of-the-art performance on many speech recognition tasks, as they are able to provide the learned dynamically changing contextual window of all sequence history. On the other hand, the convolutional neural networks (CNNs) have brought significant improvements to deep feed-forward neural networks (FFNNs),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2021

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app11135922